

Weiterbetrieb von Windenergieanlagen

Worauf es wirklich ankommt

NETZWERK WINDEXPERTS – DAS TEAM

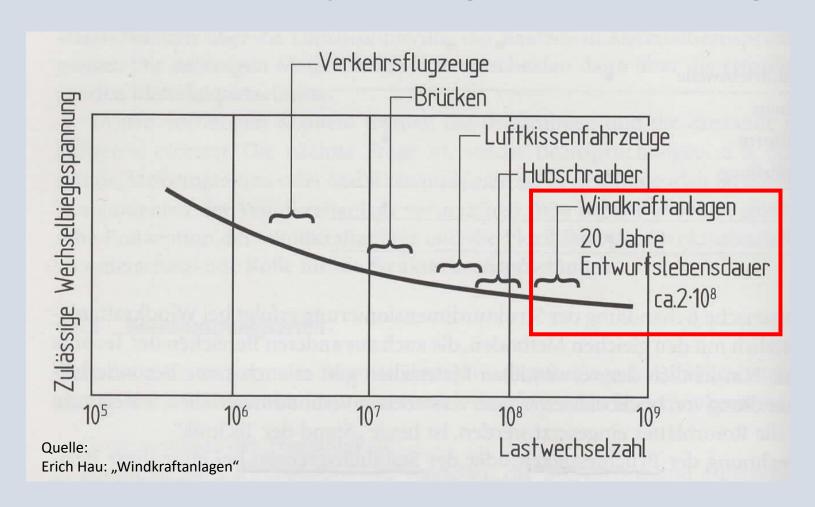
> 30.000
 Prüfungen onshore / offshore

davon mehr als1.000 BPW-Prüfungen

Zu meiner Person

Heiko Klawitter (Jahrgang 1964)

- Feinwerksmechanikmeister
- seit 1986 tätig in der Windenergie
- 1990 bis 2000 AN Windenergie GmbH (heute Siemens)
- 2000 bis 2006 Leiter der techn. Betriebsführung (windstream GmbH)
- 2002 Gründung des SV Büros SET
- 2004 öffentl. Bestellung u. Vereidigung als SV für Windenergieanlagen
- 2006 Sachverständiger bei den windexperts
- 2014 06/2017 Geschäftsführer windexperts
- ⇒ Seit 07/2017 Sascha Schnabel neuer Geschäftsführer der windexperts



Weiterbetriebsprüfung...

muss das wirklich sein?

Weiterbetriebsprüfung – ist das nötig?

Eine Windkraftanlage wird

aus Gründen der Wirtschaftlichkeit

zeitfest

d.h. für einen begrenzten Zeitraum (die sog. <u>Entwurfslebensdauer</u>) innerhalb dessen sie definierte Beanspruchungen erfahren darf

ausgelegt

Was ändert sich nach Ablauf der Entwurfslebensdauer unter techn. Gesichtspunkten?

Formell betrachtet erlischt der statische Nachweis für die Standfestigkeit der Gesamtkonstruktion.

Will der Betreiber seine WEA weiterbetreiben muss er diese Lücke schließen.

Die Spielregeln des Weiterbetriebs

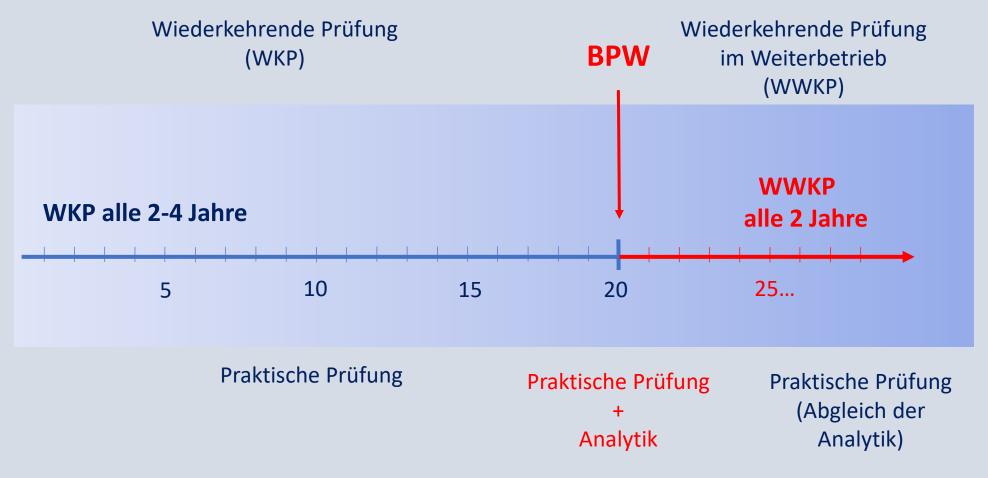
...sind unbedingt einzuhalten

Das "Evangelium"

"DIBt-Richtlinie für WEA"

DAS bundeseinheitliche,rechtsverbindlicheRegelwerk für den Betrieb(und Weiterbetrieb) von WEA

Die Bedienungsanleitung

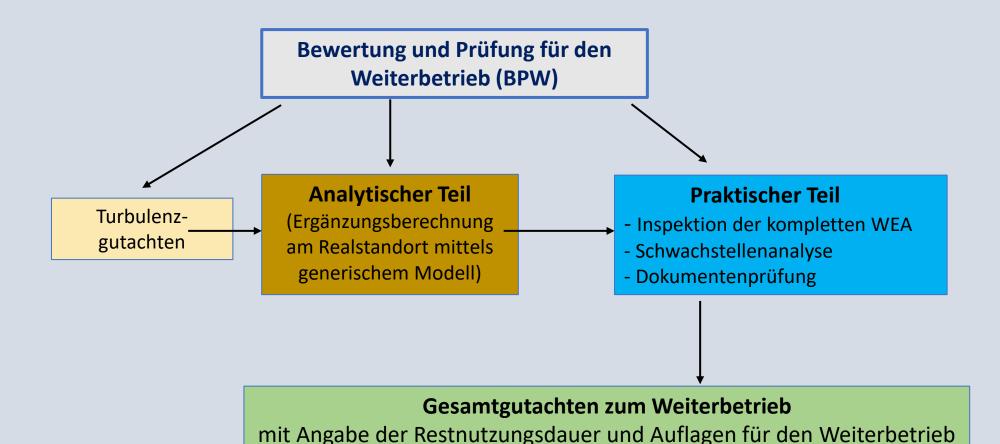


...für die Durchführung einer Bewertung und Prüfung über den Weiterbetrieb von Windenergieanlagen (BPW) an Land."

Vor und nach der Entwurfslebensdauer...

Das Potential lebensverlängernder Faktoren ist ein bunter Blumenstrauß

- Windgeschwindigkeit / Windklasse
- Turbulenzintensität
- Parkkonstellation
- Betriebszustände;
 z.B. schalloptimierter Betrieb
- Erhöhte Stillstandszeiten
- Austausch von Großkomponenten



Beschleunigte Ermüdung durch Turbulenzen

Weiterbetriebsprüfung – ein zweigleisiges Verfahren

Ermittlung der Weiterbetriebsdauer durch Kooperation

Analytischer Teil

Praktischer Teil

- + Analytischer Teil
- = **Gesamtgutachten**

Vor der Prüfung für Klarheit sorgen...

Was sind die Ziele des Betreibers?

Wichtigste Frage lautet: Wie lange soll die WEA betrieben werden?

Die mögliche Antwort...

- ⇒ Maximale Betriebsdauer
- ⇒ Anderer definierter Zeitraum (z.B. wg. beabsichtigten Repowering)
- ⇒ Verkauf des Projektes

...entscheidet über den Aufwand und die Kosten der BPW!

Das Gold der Analytik

...die technische Dokumentation

- Die tech. WEA-Unterlagen bilden das Fundament der Restlebensdauerberechnung.
- Fehlende Information m

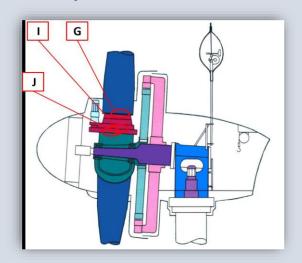
 üssen
 mit Sicherheitsabschl

 ägen/
 kostbarer Weiterbetriebsdauer
 bezahlt werden.
- Wichtigstes Dokument ist die Typenprüfung.

Der Analytische Teil – was muss er liefern?

- Rechnerische Restnutzungsdauer klar benennen (Datum des letzten Tages)
- Turbulenzintensität ist zu berücksichtigen
- Unsicherheitsbetrachtung

Wichtig: Rechnung und Ergebnisse müssen nachvollziehbar und belastbar sein!


Analytik sollte Restnutzungsdauer der lastabtragenden Komponenten ausweisen /

"Schwächstes Glied der Kette" benennen!

ID	Komponente	m	Weiterbetriebsdauer
		[-]	[a]
Α	Rotorblatt, Radius r=16.38m	10	>30
В	Rotorblatt, Radius r=13.48m	10	>30
C	Rotorblatt, Radius r=10.0m	10	>30
D	Rotorblatt, Radius r=6.52m	10	>30
Ε	Rotorblatt, Radius r=3.04m	10	>30
F	Rotorblatt, Wurzel (GFK)	10	>30
G	Rotorblattschrauben	4	19.6
Н	Blattadapter	7	>30
- 1	Schrauben Blattadapter-Pitchlager	4	19.6
J	Schrauben Pitchlager-Nabe	4	25.1
K	Nabe, Bereich Pitchlager	7	>30
L	Nabe, Bereich Welle, Torsion	7	>30
L	Nabe, Bereich Welle, Biegung	7	>30

Beispiel Enercon E40

Analytik: Restlebensdauer: 19,6 Jahre

Prüfung: keine standsicherheitsrelevanten Mängel

Der Praktische Teil

Der praktische Teil der BPW fußt auf dem Prüfungsumfang der "Wiederkehrenden Prüfung" unter besonderer Berücksichtigung der Themen Ermüdung und Schwachstellenanalyse.

Der Bericht – was muss er liefern?

Der praktische Teil (Gesamtbericht):

- Ergebnisse des analytischen Teils berücksichtigen
- Betriebs- und standsicherheitrelevante Mängel benennen
- Eine Schwachstellenanalyse enthalten
- Austausch lastabtragender Komponenten berücksichtigen
- Ggf. Auflagen enthalten

Der Bericht muss klare Aussagen und Ergebnisse enthalten, die den Weiterbetrieb der WEA sicherstellen

Schwachstellen sind zu dauerhaft zu entschärfen

- ⇒ Retrofit
- ⇒ Austausch / Erneuerung
- ⇒ zusätzliche Sicherungssysteme

oder alternativ zu überwachen:

- ⇒ Monitoring
- ⇒ verkürzte Inspektionsintervalle

Wirtschaftliche Grenzfälle des Weiterbetriebs

Neben der Sicherheit sollte die BPW auch Aussagen über den techn. Gesamtzustand der WEA liefern

Zahnbruch an Yaw-Drehkränzen infolge Fehlausrichtung + Mangelschmierung

Zusammenfassung

Weiterbetrieb von WEA ist unter techn. Gesichtspunkten in aller Regel möglich!

Wichtig:

- Spielregeln (Richtlinien beachten)
- Vor der Prüfung Ziele klären
- Analytik muss belastbar sein und sollte das schwächste Glied der Kette lastabtragender Bauteile ausweisen
- Praktische Bericht muss klare Aussagen enthalten Schwachstellenanalyse / Auflagen

windexperts Prüfgesellschaft mbH Überseetor 14 28217 Bremen Tel: ++49 421 377074-0

www.windexperts.de

info@windexperts.de h.klawitter@windexperts.de

